Resumen:
In this work, a multicomponent PZT-type material doped with manganese Mn, antimony Sb, samarium Sm, and tungsten W was fabricated using classical powder technology. Sintering of the ceramic samples was performed by the free sintering method (pressureless sintering). The influence of samarium on the properties of PZT was analyzed using a variable amount of samarium Sm3+ (from 0.8 to 1.2 wt.%) and tungsten W6+ (from 1.4 to 1.2 wt.%) admixture compared to the Pb(Zr0.49Ti0.51)0.963Mn0.021Sb0.016O3 + W6+1.8 wt.% reference composition. XRD studies have shown that PZT-type ceramic samples have a tetragonal structure with a point group of P4mm. Field emission scanning electron micrographs (FE-SEMs) showed fine and properly crystallized grains with an average grain size of 5.65-7.70 mu m and clearly visible grain boundaries. The polarization-electric field (P-E) hysteresis measurement confirmed the ferroelectric nature of the ceramic materials with high Pm maximum polarization values (from 12.38 to 16.46 mu C/cm2). Dielectric studies of PZT-type materials have revealed high permittivity values (from 1025 to 1365 at room temperature (RT) and from 18,468 to 25,390 at phase transition temperature Tm) with simultaneously low tan delta dielectric loss factor values (from 0.004 to 0.011 at RT) and low DC electrical conductivity, which are important parameters for microelectronic applications. The most homogeneous structure and the most favorable set of utility parameters are represented by the composition with an equal content of Sm and W admixtures, i.e., for 1.2 wt.%.