Dépôt DSpace/Manakin

Displaced Harmonic Oscillator V ∼ min [(x + d)2, (x − d)2] as a Benchmark Double-Well Quantum Model

Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Znojil, Miloslav cze
dc.date.accessioned 2025-12-05T14:01:24Z
dc.date.available 2025-12-05T14:01:24Z
dc.date.issued 2022 eng
dc.identifier.issn 2624-960X eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2013
dc.description.abstract For the displaced harmonic double-well oscillator, the existence of exact polynomial bound states at certain displacements (Formula presented.) is revealed. The N-plets of these quasi-exactly solvable (QES) states are constructed in closed form. For non-QES states, the Schrödinger equation can still be considered “non-polynomially exactly solvable” (NES) because the exact left and right parts of the wave function (proportional to confluent hypergeometric function) just have to be matched in the origin. © 2022 by the author. eng
dc.format p. 309-323 eng
dc.language.iso eng eng
dc.publisher MDPI eng
dc.relation.ispartof Quantum Reports, volume 4, issue: 3 eng
dc.subject displaced harmonic oscillators eng
dc.subject double-well–single-well transition eng
dc.subject matching-method solutions eng
dc.subject quasi-exact and non-polynomial exact bound states eng
dc.title Displaced Harmonic Oscillator V ∼ min [(x + d)2, (x − d)2] as a Benchmark Double-Well Quantum Model eng
dc.type article eng
dc.identifier.obd 43880788 eng
dc.identifier.doi 10.3390/quantum4030022 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2624-960X/4/3/22 cze
dc.relation.publisherversion https://www.mdpi.com/2624-960X/4/3/22 eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte