Résumé:
For the displaced harmonic double-well oscillator, the existence of exact polynomial bound states at certain displacements (Formula presented.) is revealed. The N-plets of these quasi-exactly solvable (QES) states are constructed in closed form. For non-QES states, the Schrödinger equation can still be considered “non-polynomially exactly solvable” (NES) because the exact left and right parts of the wave function (proportional to confluent hypergeometric function) just have to be matched in the origin. © 2022 by the author.