Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Alekseevskiy, Dmitry cze
dc.contributor.author Cortés, Vicente cze
dc.contributor.author Leistner, Thomas cze
dc.date.accessioned 2025-12-05T13:57:29Z
dc.date.available 2025-12-05T13:57:29Z
dc.date.issued 2023 eng
dc.identifier.issn 0213-2230 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1986
dc.description.abstract We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non-irreducible cones. The latter admit a parallel distribution of null k-planes, and we study the cases k = 1 in detail. We give structure theorems about the base manifold and in the case when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in so(1, n - 1). eng
dc.format p. 1105-1141 eng
dc.language.iso eng eng
dc.publisher EUROPEAN MATHEMATICAL SOC-EMS eng
dc.relation.ispartof REVISTA MATEMATICA IBEROAMERICANA, volume 39, issue: 3 eng
dc.subject Lorentzian manifolds eng
dc.subject pseudo-Riemannian manifolds eng
dc.subject metric cones eng
dc.subject special holonomy eng
dc.title Geometry and holonomy of indecomposable cones eng
dc.type article eng
dc.identifier.obd 43880650 eng
dc.identifier.wos 001022383100010 eng
dc.identifier.doi 10.4171/RMI/1330 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://ems.press/journals/rmi/articles/4771229 cze
dc.relation.publisherversion https://ems.press/journals/rmi/articles/4771229 eng
dc.rights.access Open Access eng
dc.project.ID GA18-00496S/Singulární prostory ze speciální holonomie a foliací eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись