Mostrar el registro sencillo del ítem
| dc.rights.license | CC BY | eng |
| dc.contributor.author | Alekseevskiy, Dmitry | cze |
| dc.contributor.author | Cortés, Vicente | cze |
| dc.contributor.author | Leistner, Thomas | cze |
| dc.date.accessioned | 2025-12-05T13:57:29Z | |
| dc.date.available | 2025-12-05T13:57:29Z | |
| dc.date.issued | 2023 | eng |
| dc.identifier.issn | 0213-2230 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1986 | |
| dc.description.abstract | We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non-irreducible cones. The latter admit a parallel distribution of null k-planes, and we study the cases k = 1 in detail. We give structure theorems about the base manifold and in the case when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in so(1, n - 1). | eng |
| dc.format | p. 1105-1141 | eng |
| dc.language.iso | eng | eng |
| dc.publisher | EUROPEAN MATHEMATICAL SOC-EMS | eng |
| dc.relation.ispartof | REVISTA MATEMATICA IBEROAMERICANA, volume 39, issue: 3 | eng |
| dc.subject | Lorentzian manifolds | eng |
| dc.subject | pseudo-Riemannian manifolds | eng |
| dc.subject | metric cones | eng |
| dc.subject | special holonomy | eng |
| dc.title | Geometry and holonomy of indecomposable cones | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43880650 | eng |
| dc.identifier.wos | 001022383100010 | eng |
| dc.identifier.doi | 10.4171/RMI/1330 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://ems.press/journals/rmi/articles/4771229 | cze |
| dc.relation.publisherversion | https://ems.press/journals/rmi/articles/4771229 | eng |
| dc.rights.access | Open Access | eng |
| dc.project.ID | GA18-00496S/Singulární prostory ze speciální holonomie a foliací | eng |