Репозиторий Dspace

Improving the classification performance on imbalanced data sets via new hybrid parameterisation model

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Mohamad, M. cze
dc.contributor.author Selamat, Ali Bin cze
dc.contributor.author Subroto, I.M. cze
dc.contributor.author Krejcar, Ondřej cze
dc.date.accessioned 2025-12-05T08:40:24Z
dc.date.available 2025-12-05T08:40:24Z
dc.date.issued 2021 eng
dc.identifier.issn 1319-1578 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/967
dc.description.abstract The aim of this work is to analyse the performance of the new proposed hybrid parameterisation model in handling problematic data. Three types of problematic data will be highlighted in this paper: i) big data set, ii) uncertain and inconsistent data set and iii) imbalanced data set. The proposed hybrid model is an integration of three main phases which consist of the data decomposition, parameter reduction and parameter selection phases. Three main methods, which are soft set and rough set theories, were implemented to reduce and to select the optimised parameter set, while a neural network was used to classify the optimised data set. This proposed model can process a data set that might contain uncertain, inconsistent and imbalanced data. Therefore, one additional phase, data decomposition, was introduced and executed after the pre-processing task was completed in order to manage the big data issue. Imbalanced data sets were used to evaluate the capability of the proposed hybrid model in handling problematic data. The experimental results demonstrate that the proposed hybrid model has the potential to be implemented with any type of data set in a classification task, especially with complex data sets. © 2019 The Authors eng
dc.format p. 787-797 eng
dc.language.iso eng eng
dc.publisher Elsevier eng
dc.relation.ispartof Journal of King Saud university - computer and information sciences, volume 33, issue: 7 eng
dc.subject Hybrid method eng
dc.subject Imbalanced data eng
dc.subject Neural network eng
dc.subject Parameter selection eng
dc.subject Rough set theory eng
dc.subject Soft set theory eng
dc.title Improving the classification performance on imbalanced data sets via new hybrid parameterisation model eng
dc.type article eng
dc.identifier.obd 43876066 eng
dc.identifier.doi 10.1016/j.jksuci.2019.04.009 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.sciencedirect.com/science/article/pii/S1319157818312229 cze
dc.relation.publisherversion https://www.sciencedirect.com/science/article/pii/S1319157818312229 eng
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись