Показать сокращенную информацию
dc.rights.license | CC BY | eng |
dc.contributor.author | Marques, Diego | cze |
dc.contributor.author | Trojovský, Pavel | cze |
dc.date.accessioned | 2020-06-07T20:51:49Z | |
dc.date.available | 2020-06-07T20:51:49Z | |
dc.date.issued | 2019 | eng |
dc.identifier.issn | 1687-1847 | eng |
dc.identifier.uri | http://hdl.handle.net/20.500.12603/340 | |
dc.description.abstract | In this paper, we study a higher order generalization of the Jacobsthal sequence, namely, the (k,c)}-Jacobsthal sequence (Jn(k,c)) for any integers n, k >= 2. In particular, we find information about roots of its characteristic polynomial. For that purpose, we combine some powerful tools such as Marden's method, the Perron-Frobenius theorem, and the Enestrom-Kakeya theorem. | eng |
dc.format | p. "Article Number: 392" | eng |
dc.language.iso | eng | eng |
dc.publisher | Springer | eng |
dc.relation.ispartof | Advances in difference equations, volume 2019, issue: 1 | eng |
dc.subject | Linear recurrence sequence | eng |
dc.subject | Jacobsthal sequence | eng |
dc.subject | Generalized Jacobsthal sequence | eng |
dc.subject | Computation | eng |
dc.subject | Polynomial | eng |
dc.subject | Matrix theory | eng |
dc.subject | Digraph. | eng |
dc.subject | Lineární rekurence | cze |
dc.subject | Jacobsthalova posloupnost | cze |
dc.subject | zobecněná Jacobsthalova posloupnost | cze |
dc.subject | polynomy | cze |
dc.subject | teorie matic | cze |
dc.subject | orientované grafy. | cze |
dc.title | On characteristic polynomial of higher order generalized Jacobsthal numbers | eng |
dc.title.alternative | O charakteristickém polynomu Jacobsthalových čísel vyššího řádu | cze |
dc.type | article | eng |
dc.identifier.obd | 43875714 | eng |
dc.identifier.doi | 10.1186/s13662-019-2327-6 | eng |
dc.description.abstract-translated | V tomto článku studujeme zobecnění Jacobsthalovy posloupnosti vyššího řádu, konkrétně (k, c) - Jacobsthalovu posloupnost (Jn (k, c)) pro všechna celá čísla n, k> = 2. Zjistíme zejména informace o kořenech jeho charakteristického polynomu. Za tímto účelem kombinujeme některé silné nástroje, jako je Mardenova metoda, věta Perronova-Frobeniusova a věta Enestromova-Kakeyava. | cze |
dc.publicationstatus | postprint | eng |
dc.peerreviewed | yes | eng |
dc.source.url | https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2327-6 | cze |
dc.relation.publisherversion | https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2327-6 | eng |
dc.rights.access | Open Access | eng |