dc.rights.license |
CC BY |
eng |
dc.contributor.author |
Marques, Diego |
cze |
dc.contributor.author |
Trojovský, Pavel |
cze |
dc.date.accessioned |
2020-06-07T20:51:49Z |
|
dc.date.available |
2020-06-07T20:51:49Z |
|
dc.date.issued |
2019 |
eng |
dc.identifier.issn |
1687-1847 |
eng |
dc.identifier.uri |
http://hdl.handle.net/20.500.12603/340 |
|
dc.description.abstract |
In this paper, we study a higher order generalization of the Jacobsthal sequence, namely, the (k,c)}-Jacobsthal sequence (Jn(k,c)) for any integers n, k >= 2. In particular, we find information about roots of its characteristic polynomial. For that purpose, we combine some powerful tools such as Marden's method, the Perron-Frobenius theorem, and the Enestrom-Kakeya theorem. |
eng |
dc.format |
p. "Article Number: 392" |
eng |
dc.language.iso |
eng |
eng |
dc.publisher |
Springer |
eng |
dc.relation.ispartof |
Advances in difference equations, volume 2019, issue: 1 |
eng |
dc.subject |
Linear recurrence sequence |
eng |
dc.subject |
Jacobsthal sequence |
eng |
dc.subject |
Generalized Jacobsthal sequence |
eng |
dc.subject |
Computation |
eng |
dc.subject |
Polynomial |
eng |
dc.subject |
Matrix theory |
eng |
dc.subject |
Digraph. |
eng |
dc.subject |
Lineární rekurence |
cze |
dc.subject |
Jacobsthalova posloupnost |
cze |
dc.subject |
zobecněná Jacobsthalova posloupnost |
cze |
dc.subject |
polynomy |
cze |
dc.subject |
teorie matic |
cze |
dc.subject |
orientované grafy. |
cze |
dc.title |
On characteristic polynomial of higher order generalized Jacobsthal numbers |
eng |
dc.title.alternative |
O charakteristickém polynomu Jacobsthalových čísel vyššího řádu |
cze |
dc.type |
article |
eng |
dc.identifier.obd |
43875714 |
eng |
dc.identifier.doi |
10.1186/s13662-019-2327-6 |
eng |
dc.description.abstract-translated |
V tomto článku studujeme zobecnění Jacobsthalovy posloupnosti vyššího řádu, konkrétně (k, c) - Jacobsthalovu posloupnost (Jn (k, c)) pro všechna celá čísla n, k> = 2. Zjistíme zejména informace o kořenech jeho charakteristického polynomu. Za tímto účelem kombinujeme některé silné nástroje, jako je Mardenova metoda, věta Perronova-Frobeniusova a věta Enestromova-Kakeyava. |
cze |
dc.publicationstatus |
postprint |
eng |
dc.peerreviewed |
yes |
eng |
dc.source.url |
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2327-6 |
cze |
dc.relation.publisherversion |
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2327-6 |
eng |
dc.rights.access |
Open Access |
eng |