Репозиторий Dspace

Sidewalk Elevation Barrier Detection Using a 2D LiDAR Scanner

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Kukuliac, P. cze
dc.contributor.author Horak, J. cze
dc.contributor.author Fojtik, D. cze
dc.contributor.author Kacmarik, M. cze
dc.contributor.author Kapica, R. cze
dc.contributor.author Krejcar, Ondřej cze
dc.contributor.author Podesva, P. cze
dc.contributor.author Dandos, R. cze
dc.contributor.author Jadviscok, P. cze
dc.contributor.author Mihola, M. cze
dc.date.accessioned 2025-12-05T16:13:42Z
dc.date.available 2025-12-05T16:13:42Z
dc.date.issued 2025 eng
dc.identifier.issn 2169-3536 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2486
dc.description.abstract While Pavement Management Systems are commonly used for effective roadway inspection and maintenance, similarly efficient solutions for sidewalk assessment remain underdeveloped. This study introduces a semi-automated method for sidewalk evaluation based on a mobile device equipped with a 2D LiDAR scanner, and image processing techniques. The proposed approach includes the design of a cost-effective sensor-equipped vehicle, data acquisition and processing workflows, elevation barrier detection methods, and a comprehensive validation framework. The system integrates data from a 2D LiDAR scanner, wheel encoders, and a localization unit to generate a local digital elevation model (DEM) via constrained spline interpolation. Barrier detection is performed using both a focal range thresholding method and a machine learning-based segmentation approach. Validation is conducted using high spatial resolution reference DEMs (1 mm and 2 cm) derived from Terrestrial Laser Scanning across two pilot sites. Detection quality is evaluated using three key metrics: Coefficient of Area Correspondence, Identification Accuracy, and Point Accuracy. The focal range method achieved overall accuracies of 91% and 92% at the two test sites, while the machine learning approach reached only 36% and 38%. Spatial coincidence indicators revealed reduced agreement, particularly due to shape distortions and segmentation inconsistencies; however, Point Accuracy proved to be the most robust validation metric. The results confirm that the proposed 2D LiDAR-based system and focal range method are effective in identifying significant elevation barriers on sidewalks. The compact design, low operational cost, and ease of use make the solution suitable for widespread deployment in municipal infrastructure assessment. © 2013 IEEE. eng
dc.format p. 170993-171008 eng
dc.language.iso eng eng
dc.publisher IEEE Access eng
dc.relation.ispartof IEEE Access, volume 13, issue: September eng
dc.subject Barriers eng
dc.subject LiDAR eng
dc.subject mobility eng
dc.subject pavement eng
dc.subject sidewalk eng
dc.title Sidewalk Elevation Barrier Detection Using a 2D LiDAR Scanner eng
dc.type article eng
dc.identifier.obd 43882344 eng
dc.identifier.doi 10.1109/ACCESS.2025.3615420 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://ieeexplore.ieee.org/document/11184171 cze
dc.relation.publisherversion https://ieeexplore.ieee.org/document/11184171 eng
dc.rights.access Open Access eng
dc.project.ID CK01000190/Senzorové měření pěších komunikací v městském prostředí pro podporu mobility osob se zdravotními omezeními eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись