Repositorio Dspace

Text Document Clustering Approach by Improved Sine Cosine Algorithm

Mostrar el registro sencillo del ítem

dc.rights.license CC BY eng
dc.contributor.author Radomirovic, Branislav cze
dc.contributor.author Jovanovic, Vuk cze
dc.contributor.author Nikolic, Bosko cze
dc.contributor.author Stojanovic, Sasa cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.contributor.author Zivkovic, Miodrag cze
dc.contributor.author Njegus, Angelina cze
dc.contributor.author Bacanin, Nebojsa cze
dc.contributor.author Strumberger, Ivana cze
dc.date.accessioned 2025-12-05T16:05:36Z
dc.date.available 2025-12-05T16:05:36Z
dc.date.issued 2023 eng
dc.identifier.issn 1392-124X eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2429
dc.description.abstract Due to the vast amounts of textual data available in various forms such as online content, social media comments, corporate data, public e-services and media data, text clustering has been experiencing rapid development. Text clustering involves categorizing and grouping similar content. It is a process of identifying significant patterns from unstructured textual data. Algorithms are being developed globally to extract useful and relevant information from large amounts of text data. Measuring the significance of content in documents to partition the collection of text data is one of the most important obstacles in text clustering. This study suggests utilizing an improved metaheuristics algorithm to fine-tune the K-means approach for text clustering task. The suggested technique is evaluated using the first 30 unconstrained test functions from the CEC2017 test-suite and six standard criterion text datasets. The simulation results and comparison with existing techniques demonstrate the robustness and supremacy of the suggested method. eng
dc.format p. 541-561 eng
dc.language.iso eng eng
dc.publisher KAUNAS UNIV TECHNOLOGY eng
dc.relation.ispartof INFORMATION TECHNOLOGY AND CONTROL, volume 52, issue: 2 eng
dc.subject text document clustering eng
dc.subject optimization problems eng
dc.subject metaheuristics eng
dc.subject sine cosine algorithm eng
dc.subject hybridization and K-means eng
dc.title Text Document Clustering Approach by Improved Sine Cosine Algorithm eng
dc.type article eng
dc.identifier.obd 43882143 eng
dc.identifier.wos 001091788500021 eng
dc.identifier.doi 10.5755/j01.itc.52.2.33536 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://itc.ktu.lt/index.php/ITC/article/view/33536 cze
dc.relation.publisherversion https://itc.ktu.lt/index.php/ITC/article/view/33536 eng
dc.rights.access Open Access eng


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta