Afficher la notice abrégée
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Krejcirik, David |
cze |
| dc.contributor.author |
Kříž, Jan |
cze |
| dc.date.accessioned |
2025-12-05T15:27:23Z |
|
| dc.date.available |
2025-12-05T15:27:23Z |
|
| dc.date.issued |
2024 |
eng |
| dc.identifier.issn |
0034-5318 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/2308 |
|
| dc.description.abstract |
We develop a general approach to study three-dimensional Schro<spacing diaeresis>dinger operators with confining potentials depending on the distance to a surface. The main idea is to apply parallel coordinates based on the surface but outside its cut-locus in the Euclidean space. If the surface is asymptotically planar in a suitable sense, we give an estimate on the location of the essential spectrum of the Schro<spacing diaeresis>dinger operator. Moreover, if the surface coincides up to a compact subset with a surface of revolution with strictly positive total Gauss curvature, it is shown that the Schro<spacing diaeresis>dinger operator possesses an infinite number of discrete eigenvalues. |
eng |
| dc.format |
p. 741-766 |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
EUROPEAN MATHEMATICAL SOC-EMS |
eng |
| dc.relation.ispartof |
Publications of research institute for mathematical sciences, volume 60, issue: 4 |
eng |
| dc.subject |
soft waveguides |
eng |
| dc.subject |
quantum layers |
eng |
| dc.subject |
cut-locus |
eng |
| dc.subject |
parallel coordinates |
eng |
| dc.subject |
discrete eigenvalues |
eng |
| dc.title |
Bound States in Soft Quantum Layers |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43881759 |
eng |
| dc.identifier.wos |
001355579200004 |
eng |
| dc.identifier.doi |
10.4171/PRIMS/60-4-4 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://ems.press/journals/prims/articles/14298286 |
cze |
| dc.relation.publisherversion |
https://ems.press/journals/prims/articles/14298286 |
eng |
| dc.rights.access |
Open Access |
eng |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée