Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Krejcirik, David cze
dc.contributor.author Kříž, Jan cze
dc.date.accessioned 2025-12-05T15:27:23Z
dc.date.available 2025-12-05T15:27:23Z
dc.date.issued 2024 eng
dc.identifier.issn 0034-5318 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2308
dc.description.abstract We develop a general approach to study three-dimensional Schro<spacing diaeresis>dinger operators with confining potentials depending on the distance to a surface. The main idea is to apply parallel coordinates based on the surface but outside its cut-locus in the Euclidean space. If the surface is asymptotically planar in a suitable sense, we give an estimate on the location of the essential spectrum of the Schro<spacing diaeresis>dinger operator. Moreover, if the surface coincides up to a compact subset with a surface of revolution with strictly positive total Gauss curvature, it is shown that the Schro<spacing diaeresis>dinger operator possesses an infinite number of discrete eigenvalues. eng
dc.format p. 741-766 eng
dc.language.iso eng eng
dc.publisher EUROPEAN MATHEMATICAL SOC-EMS eng
dc.relation.ispartof Publications of research institute for mathematical sciences, volume 60, issue: 4 eng
dc.subject soft waveguides eng
dc.subject quantum layers eng
dc.subject cut-locus eng
dc.subject parallel coordinates eng
dc.subject discrete eigenvalues eng
dc.title Bound States in Soft Quantum Layers eng
dc.type article eng
dc.identifier.obd 43881759 eng
dc.identifier.wos 001355579200004 eng
dc.identifier.doi 10.4171/PRIMS/60-4-4 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://ems.press/journals/prims/articles/14298286 cze
dc.relation.publisherversion https://ems.press/journals/prims/articles/14298286 eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte