Репозиторий Dspace

Improved indoor localization using k-medoids and k-nearest neighbour algorithms with context similarity coefficient-based fingerprint similarity metric

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Yaro, Abdulmalik Shehu cze
dc.contributor.author Malý, Filip cze
dc.contributor.author Malý, Karel cze
dc.contributor.author Pražák, Pavel cze
dc.date.accessioned 2025-12-05T15:20:54Z
dc.date.available 2025-12-05T15:20:54Z
dc.date.issued 2024 eng
dc.identifier.issn 2051-3305 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2262
dc.description.abstract Fingerprint database clustering and localization using k-medoids and k-nearest neighbour (k-NN) algorithms respectively typically use distance-based fingerprint similarity metrics, with their performances dependent on the type of distance metric used. This paper proposes employing a pattern-based metric, the context similarity coefficient (CSC), for both algorithms instead of traditional distance-based metrics. The CSC accounts for fingerprint behaviour and the non-linear relationships among fingerprints during the similarity measurement. The performance of both algorithms with the CSC as the similarity metric is evaluated on four publicly available fingerprint databases, using position root mean square error (RMSE) and silhouette score as performance metrics. These results are compared to those of the same algorithms using five distance-based metrics: Euclidean, square Euclidean, Manhattan, cosine, and Chebyshev distances. The k-medoids algorithm with CSC shows moderate clustering performance compared to the five distance-based metrics considered. However, when combined with the k-NN algorithm also using CSC, it achieves the highest localization accuracy, with at least a 29% improvement in position RMSE across all four databases. The results indicate that while k-medoids with CSC may not create well-separated clusters, combining it with the k-NN algorithm with CSC as its similarity metric significantly enhances localization accuracy compared to distance-based metrics. eng
dc.format p. "Article Number: e70023" eng
dc.language.iso eng eng
dc.publisher WILEY eng
dc.relation.ispartof JOURNAL OF ENGINEERING-JOE, volume 2024, issue: 11 eng
dc.subject clustering eng
dc.subject pattern matching eng
dc.subject wireless communication eng
dc.title Improved indoor localization using k-medoids and k-nearest neighbour algorithms with context similarity coefficient-based fingerprint similarity metric eng
dc.type article eng
dc.identifier.obd 43881553 eng
dc.identifier.wos 001368768900001 eng
dc.identifier.doi 10.1049/tje2.70023 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/tje2.70023 cze
dc.relation.publisherversion https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/tje2.70023 eng
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись