Digitální knihovna UHK

A note on transcendental analytic functions with rational coefficients mapping Q into itself

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Lelis, Jean cze
dc.contributor.author Marques, Diego cze
dc.contributor.author Moreira, Carlos Gustavo cze
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T15:18:58Z
dc.date.available 2025-12-05T15:18:58Z
dc.date.issued 2024 eng
dc.identifier.issn 0386-2194 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2249
dc.description.abstract In this note, the main focus is on a question about transcendental entire functions mapping Q into Q (which is related to a Mahler’s problem). In particular, we prove that, for any t > 0, there is no a transcendental entire function f ∈ Q[[z]] such that f(Q) ⊆ Q and whose denominator of f(p/q) is O(qt), for all rational numbers p/q, with q sufficiently large. eng
dc.format p. 43-45 eng
dc.language.iso eng eng
dc.publisher The Japan Academy eng
dc.relation.ispartof Proceedings of the Japan Academy. Series A, Mathematical sciences, volume 100, issue: 8 eng
dc.subject Transcendental functions eng
dc.subject rational functions eng
dc.subject Mahler’s question eng
dc.subject Liouville numbers eng
dc.subject Maillet’s Property eng
dc.title A note on transcendental analytic functions with rational coefficients mapping Q into itself eng
dc.type article eng
dc.identifier.obd 43881471 eng
dc.identifier.doi 10.3792/pjaa.100.009 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-100/issue-8/A-note-on-transcendental-analytic-functions-with-rational-coefficients-mapping/10.3792/pjaa.100.009.full cze
dc.relation.publisherversion https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-100/issue-8/A-note-on-transcendental-analytic-functions-with-rational-coefficients-mapping/10.3792/pjaa.100.009.full eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet