Digitální knihovna UHK

Norm Augmented Reinforcement Learning Agents With Synthesized Normative Rules: A Proposed Normative Agent Framework

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Kadir, M.R.A. cze
dc.contributor.author Selamat, A. cze
dc.contributor.author Krejcar, Ondřej cze
dc.date.accessioned 2025-12-05T14:33:56Z
dc.date.available 2025-12-05T14:33:56Z
dc.date.issued 2024 eng
dc.identifier.issn 1548-7717 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2139
dc.description.abstract The dynamic deontic (DD) is a norm synthesis framework that extracts normative rules from reinforcement learning (RL), however it was not designed to be applied in agent coordination. This study proposes a norm augmented reinforcement learning framework (NARLF) that extends said model to include a norm deliberation mechanism for learned norms re-imputation for norm biased decision-making RL agents. This study aims to test the effects of synthesized norms applied on-line and off-line on agent learning performance. The framework consists of the DD framework extended with a pre-processing and deliberation component to allow re-imputation of normative rules. A deliberation model, the Norm Augmented Q-Table (NAugQT), is proposed to map normative rules into RL agents via q-values weight updates. Results show that the framework is able to map and improve RL agent’s performance but only when synthesized off-line edited absolute norm salience value norms are used. This shows limitations when unstable salience norms are applied. Improvement in norm extraction and pre-processing are required. © 2024 IGI Global. All rights reserved. eng
dc.format p. 1-34 eng
dc.language.iso eng eng
dc.publisher IGI Global eng
dc.relation.ispartof Journal of Cases on Information Technology, volume 26, issue: 1 eng
dc.subject Convention eng
dc.subject Deontic eng
dc.subject Multi-Agent eng
dc.subject Norm eng
dc.subject Norm Deliberation eng
dc.subject Norm Detection eng
dc.subject Norm Emergence eng
dc.subject Norm Representation eng
dc.subject Norm Synthesis eng
dc.subject Normative eng
dc.subject Norms eng
dc.subject Prior Knowledge eng
dc.subject Reinforcement Learning eng
dc.title Norm Augmented Reinforcement Learning Agents With Synthesized Normative Rules: A Proposed Normative Agent Framework eng
dc.type article eng
dc.identifier.obd 43881207 eng
dc.identifier.doi 10.4018/JCIT.345650 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.igi-global.com/gateway/article/345650 cze
dc.relation.publisherversion https://www.igi-global.com/gateway/article/345650 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet