Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Ernst, Igor cze
dc.contributor.author Galaev, Anton cze
dc.date.accessioned 2025-12-05T14:14:47Z
dc.date.available 2025-12-05T14:14:47Z
dc.date.issued 2022 eng
dc.identifier.issn 1431-0635 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2065
dc.description.abstract The paper is devoted to metric connections with parallel skew-symmetric torsion in Lorentzian signature. This is motivated by recent progress in the Riemannian signature and by possible applications to supergravity theories. We provide a complete information about holonomy algebras, torsion and curvature of the considered connections up to the corresponding objects from the Riemannian signature. Various examples are constructed. It is shown how to construct all simply connected Lorentzian naturally reductive homogeneous spaces of arbitrary dimension from Riemannian naturally reductive homogeneous spaces. This leads to complete classification of Lorentzian naturally reductive homogeneous spaces in low dimensions. eng
dc.format p. 2333-2383 eng
dc.language.iso eng eng
dc.publisher Deutsche Mathematiker-Vereinigung eng
dc.relation.ispartof Documenta Mathematica, volume 27, issue: January eng
dc.subject Lorentzian manifold eng
dc.subject parallel skew-symmetric torsion eng
dc.subject holonomy eng
dc.subject naturally reductive homogeneous space eng
dc.subject type II supergravity eng
dc.title On Lorentzian Connections with Parallel Skew Torsion eng
dc.type article eng
dc.identifier.obd 43880982 eng
dc.identifier.wos 001152430100001 eng
dc.identifier.doi 10.4171/DM/X31 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://ems.press/journals/dm/articles/13131898 cze
dc.relation.publisherversion https://ems.press/journals/dm/articles/13131898 eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte