Digitální knihovna UHK

Outlier Detection Performance of a Modified Z-Score Method in Time-Series RSS Observation With Hybrid Scale Estimators

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Yaro, Abdulmalik Shehu cze
dc.contributor.author Malý, Filip cze
dc.contributor.author Pražák, Pavel cze
dc.contributor.author Malý, Karel cze
dc.date.accessioned 2025-12-05T14:12:08Z
dc.date.available 2025-12-05T14:12:08Z
dc.date.issued 2024 eng
dc.identifier.issn 2169-3536 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/2046
dc.description.abstract The modified Z-score (mZ-score) method has been used to detect outliers in time series received signal strength (RSS) observations. Its performance is dependent on the scale estimator used, and each has advantages and disadvantages over the others. One approach to developing a scale estimator that combines the advantages of two or more scale estimators is through scale estimator hybridization. In this paper, the outlier detection performance of a mZ-score method with different hybridization approaches for Sn and median absolute deviation (MAD) scale estimators is determined and analysed. Three different hybrid scale estimators are identified, namely weighted, maximum, and average hybrid scale estimators. The performance of the mZ-score method using the three different hybrid scale estimators is determined using three experimentally generated and publicly available time-series RSS datasets. Based on the simulation results, the weighted hybrid scale estimator results in the best outlier detection performance amongst the three hybrid scale estimators. When compared to the mean-shift-based outlier detection (MOD) technique, the k-means clustering-based technique, and the density-based spatial clustering (DBSCAN) technique, the mZ-score method with the weighted hybrid scale estimator performs better with little or no false alarm and false negative detections. eng
dc.format p. 12785-12796 eng
dc.language.iso eng eng
dc.publisher IEEE eng
dc.relation.ispartof IEEE Access, volume 12, issue: January eng
dc.subject Anomaly detection eng
dc.subject Robustness eng
dc.subject Location awareness eng
dc.subject Informatics eng
dc.subject Simulation eng
dc.subject Sensitivity eng
dc.subject Hybrid power systems eng
dc.subject Time series analysis eng
dc.subject Average eng
dc.subject hybrid scale estimator eng
dc.subject MAD eng
dc.subject maximum eng
dc.subject mZ-score eng
dc.subject outlier eng
dc.subject Sn eng
dc.subject weighted eng
dc.title Outlier Detection Performance of a Modified Z-Score Method in Time-Series RSS Observation With Hybrid Scale Estimators eng
dc.type article eng
dc.identifier.obd 43880909 eng
dc.identifier.wos 001151653100001 eng
dc.identifier.doi 10.1109/ACCESS.2024.3356731 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://ieeexplore.ieee.org/document/10410855 cze
dc.relation.publisherversion https://ieeexplore.ieee.org/document/10410855 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet