Digitální knihovna UHK

Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Bacanin, Nebojsa cze
dc.contributor.author Budimirovic, Nebojsa cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.contributor.author Jassim, Hothefa Shaker cze
dc.contributor.author Zivkovic, Miodrag cze
dc.contributor.author Askar, S. S cze
dc.contributor.author Abouhawwash, Mohamed cze
dc.date.accessioned 2025-12-05T12:54:58Z
dc.date.available 2025-12-05T12:54:58Z
dc.date.issued 2023 eng
dc.identifier.issn 2405-8440 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1852
dc.description.abstract With the whirlwind evolution of technology, the quantity of stored data within datasets is rapidly expanding. As a result, extracting crucial and relevant information from said datasets is a gruelling task. Feature selection is a critical preprocessing task for machine learning to reduce the excess data in a set. This research presents a novel quasi-reflection learning arithmetic optimization algorithm -firefly search, an enhanced version of the original arithmetic optimization algorithm. Quasi-reflection learning mechanism was implemented for enhancement of population diversity, while firefly algorithm metaheuristics were used to improve the exploitation abilities of the original arithmetic optimization algorithm. The aim of this wrapper-based method is to tackle a specific classification problem by selecting an optimal feature subset. The proposed algorithm is tested and compared with various well-known methods on ten unconstrained benchmark functions, then on twenty-one standard datasets gathered from the University of California, Irvine Repository and Arizona State University. Additionally, the proposed approach is applied to the Corona disease dataset. The experimental results verify the improvements of the presented method and their statistical significance. eng
dc.format p. "Article Number: e15378" eng
dc.language.iso eng eng
dc.publisher ELSEVIER SCI LTD eng
dc.relation.ispartof HELIYON, volume 9, issue: 4 eng
dc.subject Feature selection eng
dc.subject Metaheuristics eng
dc.subject Aritmetic optimisation algorithm eng
dc.subject Quasi-reflection-based learning eng
dc.subject Firefly algorithm eng
dc.title Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection eng
dc.type article eng
dc.identifier.obd 43880205 eng
dc.identifier.wos 000998679400001 eng
dc.identifier.doi 10.1016/j.heliyon.2023.e15378 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.sciencedirect.com/science/article/pii/S2405844023025859?via%3Dihub cze
dc.relation.publisherversion https://www.sciencedirect.com/science/article/pii/S2405844023025859?via%3Dihub eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet