Репозиторий Dspace

On the spectrum of convolution operator with a potential

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Borisov, Denis cze
dc.contributor.author Piatnitski, A. L cze
dc.contributor.author Zhizhina, E. A cze
dc.date.accessioned 2025-12-05T12:47:29Z
dc.date.available 2025-12-05T12:47:29Z
dc.date.issued 2023 eng
dc.identifier.issn 0022-247X eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1799
dc.description.abstract This paper focuses on the spectral properties of a bounded self-adjoint operator in L-2(R-d) being the sum of a convolution operator with an integrable convolution kernel and an operator of multiplication by a continuous potential converging to zero at infinity. We study both the essential and the discrete spectra of this operator. It is shown that the essential spectrum of the sum is the union of the essential spectrum of the convolution operator and the image of the potential. We then provide a number of sufficient conditions for the existence of discrete spectrum and obtain lower and upper bounds for the number of discrete eigenvalues. Special attention is paid to the case of operators possessing countably many points of the discrete spectrum. We also compare the spectral properties of the operators considered in this work with those of classical Schrodinger operators. (c) 2022 Elsevier Inc. All rights reserved. eng
dc.format p. "Article Number: 126568" eng
dc.language.iso eng eng
dc.publisher Elsevier eng
dc.relation.ispartof Journal of mathematical analysis and applications, volume 517, issue: 1 eng
dc.subject Convolution operator eng
dc.subject Potential eng
dc.subject Essential spectrum eng
dc.subject Discrete spectrum eng
dc.subject Minimax principle eng
dc.title On the spectrum of convolution operator with a potential eng
dc.type article eng
dc.identifier.obd 43880089 eng
dc.identifier.wos 000999834100007 eng
dc.identifier.doi 10.1016/j.jmaa.2022.126568 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://linkinghub.elsevier.com/retrieve/pii/S0022247X22005820 cze
dc.relation.publisherversion https://linkinghub.elsevier.com/retrieve/pii/S0022247X22005820 eng
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись