Digitální knihovna UHK

Architecture-Oriented Agent-Based Simulations and Machine Learning Solution: The Case of Tsunami Emergency Analysis for Local Decision Makers

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Čech, Pavel cze
dc.contributor.author Mattos, Martin cze
dc.contributor.author Anderkova, Viera cze
dc.contributor.author Babic, Frantisek cze
dc.contributor.author Alhasnawi, Bilal Naji cze
dc.contributor.author Bureš, Vladimír cze
dc.contributor.author Kořínek, Milan cze
dc.contributor.author Štekerová, Kamila cze
dc.contributor.author Husáková, Martina cze
dc.contributor.author Zanker, Marek cze
dc.contributor.author Manneela, Sunanda cze
dc.contributor.author Triantafyllou, Ioanna cze
dc.date.accessioned 2025-12-05T12:42:17Z
dc.date.available 2025-12-05T12:42:17Z
dc.date.issued 2023 eng
dc.identifier.issn 2078-2489 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1762
dc.description.abstract Tsunamis are a perilous natural phenomenon endangering growing coastal populations and tourists in many seaside resorts. Failures in responding to recent tsunami events stresses the importance of further research in building a robust tsunami warning system, especially in the "last mile" component. The lack of detail, unification and standardisation in information processing and decision support hampers wider implementation of reusable information technology solutions among local authorities and officials. In this paper, the architecture of a tsunami emergency solution is introduced. The aim of the research is to present a tsunami emergency solution for local authorities and officials responsible for preparing tsunami response and evacuation plans. The solution is based on a combination of machine learning techniques and agent-based modelling, enabling analysis of both real and simulated datasets. The solution is designed and developed based on the principles of enterprise architecture development. The data exploration follows the practices for data mining and big data analyses. The architecture of the solution is depicted using the standardised notation and includes components that can be exploited by responsible local authorities to test various tsunami impact scenarios and prepare plans for appropriate response measures. eng
dc.format p. "Article Number: 172" eng
dc.language.iso eng eng
dc.publisher MDPI eng
dc.relation.ispartof INFORMATION, volume 14, issue: 3 eng
dc.subject tsunami eng
dc.subject tsunami warning system eng
dc.subject tsunami warning system architecture eng
dc.subject decision support eng
dc.subject machine learning eng
dc.subject agent-based evacuation simulation eng
dc.title Architecture-Oriented Agent-Based Simulations and Machine Learning Solution: The Case of Tsunami Emergency Analysis for Local Decision Makers eng
dc.type article eng
dc.identifier.obd 43879990 eng
dc.identifier.wos 000959155000001 eng
dc.identifier.doi 10.3390/info14030172 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2078-2489/14/3/172 cze
dc.relation.publisherversion https://www.mdpi.com/2078-2489/14/3/172 eng
dc.rights.access Open Access eng
dc.project.ID LTC20020/Consolidating research in tsunami hazard through the application of systems approach eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet