Репозиторий Dspace

Infrastructure development, human development index, and CO2 emissions in China: A quantile regression approach

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Liu, Yaofei cze
dc.contributor.author Poulová, Petra cze
dc.contributor.author Pražák, Pavel cze
dc.contributor.author Ullah, Farman cze
dc.contributor.author Nathaniel, Solomon Prince cze
dc.date.accessioned 2025-12-05T11:58:01Z
dc.date.available 2025-12-05T11:58:01Z
dc.date.issued 2023 eng
dc.identifier.issn 2296-665X eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1742
dc.description.abstract This study investigates the relationships between infrastructure development, human development index (HDI), and CO2 emissions in China. Infrastructure has played an essential role in achieving social and economic developmental goals in China, but environmental pollution has significantly increased in the country in the last two decades. Our analysis uses time series data from 1990 to 2021 and quantile regressions, and we find that infrastructure has positive and statistically significant relationships with HDI, CO2 emissions, and GDP in all quantiles. Recent infrastructure upgrades improve living standards and increase HDI but damage the environment, and infrastructure is the main source of CO2 emissions in the country. Therefore, the government should invest in sustainable infrastructure to mitigate CO2 emissions. The government may consider infrastructure options such as low carbon transportation, including railway infrastructure, urban metros, and light rail. eng
dc.format p. "Article Number: 1114977" eng
dc.language.iso eng eng
dc.publisher FRONTIERS MEDIA SA eng
dc.relation.ispartof FRONTIERS IN ENVIRONMENTAL SCIENCE, volume 11, issue: January eng
dc.subject infrastructure eng
dc.subject human development index eng
dc.subject CO2 emissions eng
dc.subject China eng
dc.subject quantile regression eng
dc.title Infrastructure development, human development index, and CO2 emissions in China: A quantile regression approach eng
dc.type article eng
dc.identifier.obd 43879877 eng
dc.identifier.wos 000934930200001 eng
dc.identifier.doi 10.3389/fenvs.2023.1114977 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.frontiersin.org/articles/10.3389/fenvs.2023.1114977/full cze
dc.relation.publisherversion https://www.frontiersin.org/articles/10.3389/fenvs.2023.1114977/full eng
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись