Dépôt DSpace/Manakin

Evaluation of deepfake detection using YOLO with local binary pattern histogram

Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Hubálovský, Štěpán cze
dc.contributor.author Trojovský, Pavel cze
dc.contributor.author Bacanin, Nebojsa cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.date.accessioned 2025-12-05T11:25:46Z
dc.date.available 2025-12-05T11:25:46Z
dc.date.issued 2022 eng
dc.identifier.issn 2376-5992 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1575
dc.description.abstract Recently, deepfake technology has become a popularly used technique for swapping faces in images or videos that create forged data to mislead society. Detecting the originality of the video is a critical process due to the negative pattern of the image. In the detection of forged images or videos, various image processing techniques were implemented. Existing methods are ineffective in detecting new threats or false images. This article has proposed You Only Look Once-Local Binary Pattern Histogram (YOLO-LBPH) to detect fake videos. YOLO is used to detect the face in an image or a frame of a video. The spatial features are extracted from the face image using a EfficientNet-B5 method. Spatial feature extractions are fed as input in the Local Binary Pattern Histogram to extract temporal features. The proposed YOLO-LBPH is implemented using the large scale deepfake forensics (DF) dataset known as CelebDF-FaceForensics++(c23), which is a combination of FaceForensics++(c23) and Celeb-DF. As a result, the precision score is 86.88% in the CelebDF-FaceForensics++(c23) dataset, 88.9% in the DFFD dataset, 91.35% in the CASIA-WebFace data. Similarly, the recall is 92.45% in the Celeb-DF-Face Forensics ++(c23) dataset, 93.76% in the DFFD dataset, and 94.35% in the CASIA-Web Face dataset. eng
dc.format p. "Article Number: 1086" eng
dc.language.iso eng eng
dc.publisher PeerJ Inc eng
dc.relation.ispartof PeerJ Computer Science, volume 8, issue: September eng
dc.subject Deepfake eng
dc.subject YOLO eng
dc.subject LBPH eng
dc.subject FaceForencies++ eng
dc.subject Celeb-DF eng
dc.subject Celeb DF-Face Forensics++ eng
dc.title Evaluation of deepfake detection using YOLO with local binary pattern histogram eng
dc.type article eng
dc.identifier.obd 43879110 eng
dc.identifier.doi 10.7717/peerj-cs.1086 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://peerj.com/articles/cs-1086/ cze
dc.relation.publisherversion https://peerj.com/articles/cs-1086/ eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte