Digitální knihovna UHK

COVID-19 Severity Prediction Using Enhanced Whale with Salp Swarm Feature Classification

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Budimirovic, Nebojsa cze
dc.contributor.author Prabhu, E. cze
dc.contributor.author Antonijevic, Milos cze
dc.contributor.author Zivkovic, Miodrag cze
dc.contributor.author Bacanin, Nebojsa cze
dc.contributor.author Strumberger, Ivana cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.date.accessioned 2025-12-05T11:16:19Z
dc.date.available 2025-12-05T11:16:19Z
dc.date.issued 2022 eng
dc.identifier.issn 1546-2218 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1533
dc.description.abstract Computerized tomography (CT) scans and X-rays play an important role in the diagnosis of COVID-19 and pneumonia. On the basis of the image analysis results of chest CT and X-rays, the severity of lung infection is monitored using a tool. Many researchers have done in diagnosis of lung infection in an accurate and efficient takes lot of time and inefficient. To overcome these issues, our proposed study implements four cascaded stages. First, for pre-processing, a mean filter is used. Second, texture feature extraction uses principal component analysis (PCA). Third, a modified whale optimization algorithm is used (MWOA) for a feature selection algorithm. The severity of lung infection is detected on the basis of age group. Fourth, image classification is done by using the proposed MWOA with the salp swarm algorithm (MWOA-SSA). MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%. The sensitivity rate of the MWOA-SSA algorithm is better that of than PCA (84.4%) and MWOA (95.2%). MWOA-SSA outperforms other algorithms with a specificity of 97.8%. This proposed method improves the effective classification of lung affected images from large datasets. eng
dc.format p. 1685-1698 eng
dc.language.iso eng eng
dc.publisher Tech Science Press eng
dc.relation.ispartof CMC-Computers, Materials & Continua, volume 72, issue: 1 eng
dc.subject PCA eng
dc.subject WOA eng
dc.subject CT-image eng
dc.subject lung infection eng
dc.subject COVID-19 eng
dc.title COVID-19 Severity Prediction Using Enhanced Whale with Salp Swarm Feature Classification eng
dc.type article eng
dc.identifier.obd 43878980 eng
dc.identifier.wos 000767341900011 eng
dc.identifier.doi 10.32604/cmc.2022.023418 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.techscience.com/cmc/v72n1/46856 cze
dc.relation.publisherversion https://www.techscience.com/cmc/v72n1/46856 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet