Digitální knihovna UHK

Neural Cryptography with Fog Computing Network for Health Monitoring Using IoMT

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Ravikumar, G. cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.contributor.author AlZain, Mohammed A. cze
dc.contributor.author Masud, Mehedi cze
dc.contributor.author Abouhawwash, Mohamed cze
dc.date.accessioned 2025-12-05T11:16:10Z
dc.date.available 2025-12-05T11:16:10Z
dc.date.issued 2023 eng
dc.identifier.issn 0267-6192 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1532
dc.description.abstract Sleep apnea syndrome (SAS) is a breathing disorder while a person is asleep. The traditional method for examining SAS is Polysomnography (PSG). The standard procedure of PSG requires complete overnight observation in a laboratory. PSG typically provides accurate results, but it is expensive and time consuming. However, for people with Sleep apnea (SA), available beds and laboratories are limited. Resultantly, it may produce inaccurate diagnosis. Thus, this paper proposes the Internet of Medical Things (IoMT) framework with a machine learning concept of fully connected neural network (FCNN) with k-nearest neighbor (k-NN) classifier. This paper describes smart monitoring of a patient???s sleeping habit and diagnosis of SA using FCNN-KNN+ average square error (ASE). For diagnosing SA, the Oxygen saturation (SpO2) sensor device is popularly used for monitoring the heart rate and blood oxygen level. This diagnosis information is securely stored in the IoMT fog computing network. Doctors can carefully monitor the SA patient remotely on the basis of sensor values, which are efficiently stored in the fog computing network. The proposed technique takes less than 0.2 s with an accuracy of 95%, which is higher than existing models. eng
dc.format p. 945-959 eng
dc.language.iso eng eng
dc.publisher TECH SCIENCE PRESS eng
dc.relation.ispartof Computer Systems Science and Engineering, volume 44, issue: 1 eng
dc.subject Sleep apneapolysomnography eng
dc.subject IOMT eng
dc.subject fog node eng
dc.subject security eng
dc.subject neural network eng
dc.subject KNN eng
dc.subject signature encryption eng
dc.subject sensor eng
dc.title Neural Cryptography with Fog Computing Network for Health Monitoring Using IoMT eng
dc.type article eng
dc.identifier.obd 43878978 eng
dc.identifier.wos 000810052600016 eng
dc.identifier.doi 10.32604/csse.2023.024605 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.techscience.com/csse/v44n1/48051 cze
dc.relation.publisherversion https://www.techscience.com/csse/v44n1/48051 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet