Repositorio Dspace

Selective Microwave Zeroth-Order Resonator Sensor Aided by Machine Learning

Mostrar el registro sencillo del ítem

dc.rights.license CC BY eng
dc.contributor.author Kazemi, Nazli cze
dc.contributor.author Gholizadeh, Nastaran cze
dc.contributor.author Musílek, Petr cze
dc.date.accessioned 2025-12-05T11:12:36Z
dc.date.available 2025-12-05T11:12:36Z
dc.date.issued 2022 eng
dc.identifier.issn 1424-8220 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1509
dc.description.abstract Microwave sensors are principally sensitive to effective permittivity, and hence not selective to a specific material under test (MUT). In this work, a highly compact microwave planar sensor based on zeroth-order resonance is designed to operate at three distant frequencies of 3.5, 4.3, and 5 GHz, with the size of only lambda(g-min)/8 per resonator. This resonator is deployed to characterize liquid mixtures with one desired MUT (here water) combined with an interfering material (e.g., methanol, ethanol, or acetone) with various concentrations (0%:10%:100 %). To achieve a sensor with selectivity to water, a convolutional neural network (CNN) is used to recognize different concentrations of water regardless of the host medium. To obtain a high accuracy of this classification, Style-GAN is utilized to generate a reliable sensor response for concentrations between water and the host medium (methanol, ethanol, and acetone). A high accuracy of 90.7% is achieved using CNN for selectively discriminating water concentrations. eng
dc.format p. "Article Number: 5362" eng
dc.language.iso eng eng
dc.publisher MDPI eng
dc.relation.ispartof SENSORS, volume 22, issue: 14 eng
dc.subject microwave sensor eng
dc.subject selectivity eng
dc.subject resonators eng
dc.subject machine learning eng
dc.subject generative adversarial network eng
dc.title Selective Microwave Zeroth-Order Resonator Sensor Aided by Machine Learning eng
dc.type article eng
dc.identifier.obd 43878926 eng
dc.identifier.wos 000832411500001 eng
dc.identifier.doi 10.3390/s22145362 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/1424-8220/22/14/5362 cze
dc.relation.publisherversion https://www.mdpi.com/1424-8220/22/14/5362 eng
dc.rights.access Open Access eng


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta