Digitální knihovna UHK

Selective Microwave Zeroth-Order Resonator Sensor Aided by Machine Learning

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Kazemi, Nazli cze
dc.contributor.author Gholizadeh, Nastaran cze
dc.contributor.author Musílek, Petr cze
dc.date.accessioned 2025-12-05T11:12:36Z
dc.date.available 2025-12-05T11:12:36Z
dc.date.issued 2022 eng
dc.identifier.issn 1424-8220 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1509
dc.description.abstract Microwave sensors are principally sensitive to effective permittivity, and hence not selective to a specific material under test (MUT). In this work, a highly compact microwave planar sensor based on zeroth-order resonance is designed to operate at three distant frequencies of 3.5, 4.3, and 5 GHz, with the size of only lambda(g-min)/8 per resonator. This resonator is deployed to characterize liquid mixtures with one desired MUT (here water) combined with an interfering material (e.g., methanol, ethanol, or acetone) with various concentrations (0%:10%:100 %). To achieve a sensor with selectivity to water, a convolutional neural network (CNN) is used to recognize different concentrations of water regardless of the host medium. To obtain a high accuracy of this classification, Style-GAN is utilized to generate a reliable sensor response for concentrations between water and the host medium (methanol, ethanol, and acetone). A high accuracy of 90.7% is achieved using CNN for selectively discriminating water concentrations. eng
dc.format p. "Article Number: 5362" eng
dc.language.iso eng eng
dc.publisher MDPI eng
dc.relation.ispartof SENSORS, volume 22, issue: 14 eng
dc.subject microwave sensor eng
dc.subject selectivity eng
dc.subject resonators eng
dc.subject machine learning eng
dc.subject generative adversarial network eng
dc.title Selective Microwave Zeroth-Order Resonator Sensor Aided by Machine Learning eng
dc.type article eng
dc.identifier.obd 43878926 eng
dc.identifier.wos 000832411500001 eng
dc.identifier.doi 10.3390/s22145362 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/1424-8220/22/14/5362 cze
dc.relation.publisherversion https://www.mdpi.com/1424-8220/22/14/5362 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet