| dc.rights.license | CC BY | eng |
| dc.contributor.author | Chrysikos, Ioannis | cze |
| dc.date.accessioned | 2025-12-05T11:11:10Z | |
| dc.date.available | 2025-12-05T11:11:10Z | |
| dc.date.issued | 2021 | eng |
| dc.identifier.issn | 1804-1388 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1500 | |
| dc.description.abstract | We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-Torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [15] related with the first variation of the volume on a compact Einstein manifold. © 2021 Ioannis Chrysikos, published by Sciendo. | eng |
| dc.format | p. 385-393 | eng |
| dc.language.iso | eng | eng |
| dc.publisher | Sciendo | eng |
| dc.relation.ispartof | Communications in Mathematics, volume 29, issue: 3 | eng |
| dc.subject | Einstein manifolds | eng |
| dc.subject | connections with totally skew-symmetric torsion | eng |
| dc.subject | parallel skew-Torsion | eng |
| dc.subject | scalar curvature | eng |
| dc.title | A note on the volume of-Einstein manifolds with skew-Torsion | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43878903 | eng |
| dc.identifier.doi | 10.2478/cm-2020-0009 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://eudml.org/doc/298101 | cze |
| dc.relation.publisherversion | https://eudml.org/doc/298101 | eng |
| dc.rights.access | Open Access | eng |
| dc.project.ID | GJ19-14466Y/Speciální metriky v supergravitaci a nové G-struktury | eng |