Zobrazit minimální záznam
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Chrysikos, Ioannis |
cze |
| dc.date.accessioned |
2025-12-05T11:11:10Z |
|
| dc.date.available |
2025-12-05T11:11:10Z |
|
| dc.date.issued |
2021 |
eng |
| dc.identifier.issn |
1804-1388 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1500 |
|
| dc.description.abstract |
We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-Torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [15] related with the first variation of the volume on a compact Einstein manifold. © 2021 Ioannis Chrysikos, published by Sciendo. |
eng |
| dc.format |
p. 385-393 |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
Sciendo |
eng |
| dc.relation.ispartof |
Communications in Mathematics, volume 29, issue: 3 |
eng |
| dc.subject |
Einstein manifolds |
eng |
| dc.subject |
connections with totally skew-symmetric torsion |
eng |
| dc.subject |
parallel skew-Torsion |
eng |
| dc.subject |
scalar curvature |
eng |
| dc.title |
A note on the volume of-Einstein manifolds with skew-Torsion |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43878903 |
eng |
| dc.identifier.doi |
10.2478/cm-2020-0009 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://eudml.org/doc/298101 |
cze |
| dc.relation.publisherversion |
https://eudml.org/doc/298101 |
eng |
| dc.rights.access |
Open Access |
eng |
| dc.project.ID |
GJ19-14466Y/Speciální metriky v supergravitaci a nové G-struktury |
eng |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam