Digitální knihovna UHK

Construction of self-adjoint differential operators with prescribed spectral properties

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Behrndt, Jussi cze
dc.contributor.author Khrabustovskyi, Andrii cze
dc.date.accessioned 2025-12-05T11:08:17Z
dc.date.available 2025-12-05T11:08:17Z
dc.date.issued 2022 eng
dc.identifier.issn 0025-584X eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1482
dc.description.abstract In this expository article some spectral properties of self-adjoint differential operators are investigated. The main objective is to illustrate and (partly) review how one can construct domains or potentials such that the essential or discrete spectrum of a Schrodinger operator of a certain type (e.g. the Neumann Laplacian) coincides with a predefined subset of the real line. Another aim is to emphasize that the spectrum of a differential operator on a bounded domain or bounded interval is not necessarily discrete, that is, eigenvalues of infinite multiplicity, continuous spectrum, and eigenvalues embedded in the continuous spectrum may be present. This unusual spectral effect is, very roughly speaking, caused by (at least) one of the following three reasons: The bounded domain has a rough boundary, the potential is singular, or the boundary condition is nonstandard. In three separate explicit constructions we demonstrate how each of these possibilities leads to a Schrodinger operator with prescribed essential spectrum. eng
dc.format p. 1063-1095 eng
dc.language.iso eng eng
dc.publisher John Wiley & Sons eng
dc.relation.ispartof Mathematische Nachrichten, volume 295, issue: 6 eng
dc.subject boundary condition eng
dc.subject differential operator eng
dc.subject discrete spectrum eng
dc.subject essential spectrum eng
dc.subject Neumann Laplacian eng
dc.subject Schrodinger operator eng
dc.subject singular potential eng
dc.title Construction of self-adjoint differential operators with prescribed spectral properties eng
dc.type article eng
dc.identifier.obd 43878828 eng
dc.identifier.wos 000791828800001 eng
dc.identifier.doi 10.1002/mana.201900491 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://onlinelibrary.wiley.com/doi/10.1002/mana.201900491 cze
dc.source.url https://arxiv.org/abs/1911.04781 cze
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet