Zobrazit minimální záznam
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Behrndt, Jussi |
cze |
| dc.contributor.author |
Khrabustovskyi, Andrii |
cze |
| dc.date.accessioned |
2025-12-05T10:30:53Z |
|
| dc.date.available |
2025-12-05T10:30:53Z |
|
| dc.date.issued |
2022 |
eng |
| dc.identifier.issn |
0022-1236 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1337 |
|
| dc.description.abstract |
This paper deals with singular Schrodinger operators of the form -d(2)/dx(2) + Sigma(k is an element of Z) gamma(k)delta(. - z(k)), gamma(k) is an element of R, in L-2 (l(-), l(+)), where delta(. - z(k)) is the Dirac delta-function supported at z(k) is an element of (l(-), l(+)) and (l(-), l(+)) is a bounded interval. It will be shown that the interaction strengths gamma(k) and the points z(k) can be chosen in such a way that the essential spectrum and a bounded part of the discrete spectrum of this self-adjoint operator coincide with prescribed sets on the real line. |
eng |
| dc.format |
p. "Article Number: 109252" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
eng |
| dc.relation.ispartof |
Journal of functional analysis, volume 282, issue: 1 |
eng |
| dc.subject |
Schrodinger operator |
eng |
| dc.subject |
delta-Interaction |
eng |
| dc.subject |
Essential spectrum |
eng |
| dc.subject |
Discrete spectrum |
eng |
| dc.title |
Singular Schrodinger operators with prescribed spectral properties |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43878121 |
eng |
| dc.identifier.wos |
000709435800001 |
eng |
| dc.identifier.doi |
10.1016/j.jfa.2021.109252 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.sciencedirect.com/science/article/pii/S0022123621003347?via%3Dihub |
cze |
| dc.source.url |
https://arxiv.org/abs/2106.07184 |
cze |
| dc.rights.access |
Open Access |
eng |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam