Показать сокращенную информацию
| dc.rights.license | CC BY | eng |
| dc.contributor.author | Behrndt, Jussi | cze |
| dc.contributor.author | Khrabustovskyi, Andrii | cze |
| dc.date.accessioned | 2025-12-05T10:30:53Z | |
| dc.date.available | 2025-12-05T10:30:53Z | |
| dc.date.issued | 2022 | eng |
| dc.identifier.issn | 0022-1236 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1337 | |
| dc.description.abstract | This paper deals with singular Schrodinger operators of the form -d(2)/dx(2) + Sigma(k is an element of Z) gamma(k)delta(. - z(k)), gamma(k) is an element of R, in L-2 (l(-), l(+)), where delta(. - z(k)) is the Dirac delta-function supported at z(k) is an element of (l(-), l(+)) and (l(-), l(+)) is a bounded interval. It will be shown that the interaction strengths gamma(k) and the points z(k) can be chosen in such a way that the essential spectrum and a bounded part of the discrete spectrum of this self-adjoint operator coincide with prescribed sets on the real line. | eng |
| dc.format | p. "Article Number: 109252" | eng |
| dc.language.iso | eng | eng |
| dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | eng |
| dc.relation.ispartof | Journal of functional analysis, volume 282, issue: 1 | eng |
| dc.subject | Schrodinger operator | eng |
| dc.subject | delta-Interaction | eng |
| dc.subject | Essential spectrum | eng |
| dc.subject | Discrete spectrum | eng |
| dc.title | Singular Schrodinger operators with prescribed spectral properties | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43878121 | eng |
| dc.identifier.wos | 000709435800001 | eng |
| dc.identifier.doi | 10.1016/j.jfa.2021.109252 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://www.sciencedirect.com/science/article/pii/S0022123621003347?via%3Dihub | cze |
| dc.source.url | https://arxiv.org/abs/2106.07184 | cze |
| dc.rights.access | Open Access | eng |