Zobrazit minimální záznam
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Alekseevskiy, Dmitry |
cze |
| dc.contributor.author |
Ganji, Masoud |
cze |
| dc.contributor.author |
Schmalz, Gerd |
cze |
| dc.contributor.author |
Spiro, Andrea |
cze |
| dc.date.accessioned |
2025-12-05T10:26:48Z |
|
| dc.date.available |
2025-12-05T10:26:48Z |
|
| dc.date.issued |
2021 |
eng |
| dc.identifier.issn |
0926-2245 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1310 |
|
| dc.description.abstract |
We study Lorentzian manifolds (M, g) of dimension n >= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -> S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved. |
eng |
| dc.format |
p. "Article Number: 101724" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
ELSEVIER |
eng |
| dc.relation.ispartof |
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, volume 75, issue: April |
eng |
| dc.subject |
Lorentzian manifold |
eng |
| dc.subject |
shearfree congruences |
eng |
| dc.subject |
Kähler-Sasaki geometry |
eng |
| dc.title |
Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43877997 |
eng |
| dc.identifier.wos |
000632451300011 |
eng |
| dc.identifier.doi |
10.1016/j.difgeo.2021.101724 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub |
cze |
| dc.relation.publisherversion |
https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub |
eng |
| dc.rights.access |
Open Access |
eng |
| dc.project.ID |
GA18-00496S/Singulární prostory ze speciální holonomie a foliací |
eng |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam