Показать сокращенную информацию
| dc.rights.license | CC BY | eng |
| dc.contributor.author | Alekseevskiy, Dmitry | cze |
| dc.contributor.author | Ganji, Masoud | cze |
| dc.contributor.author | Schmalz, Gerd | cze |
| dc.contributor.author | Spiro, Andrea | cze |
| dc.date.accessioned | 2025-12-05T10:26:48Z | |
| dc.date.available | 2025-12-05T10:26:48Z | |
| dc.date.issued | 2021 | eng |
| dc.identifier.issn | 0926-2245 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1310 | |
| dc.description.abstract | We study Lorentzian manifolds (M, g) of dimension n >= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -> S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved. | eng |
| dc.format | p. "Article Number: 101724" | eng |
| dc.language.iso | eng | eng |
| dc.publisher | ELSEVIER | eng |
| dc.relation.ispartof | DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, volume 75, issue: April | eng |
| dc.subject | Lorentzian manifold | eng |
| dc.subject | shearfree congruences | eng |
| dc.subject | Kähler-Sasaki geometry | eng |
| dc.title | Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43877997 | eng |
| dc.identifier.wos | 000632451300011 | eng |
| dc.identifier.doi | 10.1016/j.difgeo.2021.101724 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub | cze |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub | eng |
| dc.rights.access | Open Access | eng |
| dc.project.ID | GA18-00496S/Singulární prostory ze speciální holonomie a foliací | eng |