Digitální knihovna UHK

Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Alekseevskiy, Dmitry cze
dc.contributor.author Ganji, Masoud cze
dc.contributor.author Schmalz, Gerd cze
dc.contributor.author Spiro, Andrea cze
dc.date.accessioned 2025-12-05T10:26:48Z
dc.date.available 2025-12-05T10:26:48Z
dc.date.issued 2021 eng
dc.identifier.issn 0926-2245 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1310
dc.description.abstract We study Lorentzian manifolds (M, g) of dimension n >= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -> S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved. eng
dc.format p. "Article Number: 101724" eng
dc.language.iso eng eng
dc.publisher ELSEVIER eng
dc.relation.ispartof DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, volume 75, issue: April eng
dc.subject Lorentzian manifold eng
dc.subject shearfree congruences eng
dc.subject Kähler-Sasaki geometry eng
dc.title Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry eng
dc.type article eng
dc.identifier.obd 43877997 eng
dc.identifier.wos 000632451300011 eng
dc.identifier.doi 10.1016/j.difgeo.2021.101724 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub cze
dc.relation.publisherversion https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub eng
dc.rights.access Open Access eng
dc.project.ID GA18-00496S/Singulární prostory ze speciální holonomie a foliací eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet