Dépôt DSpace/Manakin

The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Mobius Iterated Function

Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Trojovský, Pavel cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.date.accessioned 2025-12-05T10:26:31Z
dc.date.available 2025-12-05T10:26:31Z
dc.date.issued 2021 eng
dc.identifier.issn 2504-3110 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1308
dc.description.abstract In 2021, Mork and Ulness studied the Mandelbrot and Julia sets for a generalization of the well-explored function eta(lambda)(z)=z(2)+lambda. Their generalization was based on the composition of eta(lambda) with the Mobius transformation mu(z)=1/z at each iteration step. Furthermore, they posed a conjecture providing a relation between the coefficients of (each order) iterated series of mu(eta(lambda)(z)) (at z=0) and the Catalan numbers. In this paper, in particular, we prove this conjecture in a more precise (quantitative) formulation. eng
dc.format p. "Article Number: 92" eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Fractal and Fractional, volume 5, issue: 3 eng
dc.subject fractal eng
dc.subject Mandelbrot set eng
dc.subject Julia set eng
dc.subject Mobius transformation eng
dc.subject iterated function eng
dc.subject Catalan numbers eng
dc.title The Proof of a Conjecture Relating Catalan Numbers to an Averaged Mandelbrot-Mobius Iterated Function eng
dc.type article eng
dc.identifier.obd 43877989 eng
dc.identifier.doi 10.3390/fractalfract5030092 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2504-3110/5/3/92 cze
dc.relation.publisherversion https://www.mdpi.com/2504-3110/5/3/92 eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte