Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Alekseevskiy, Dmitry cze
dc.contributor.author Cortes, V. cze
dc.date.accessioned 2025-12-05T10:26:22Z
dc.date.available 2025-12-05T10:26:22Z
dc.date.issued 2021 eng
dc.identifier.issn 1083-4362 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1307
dc.description.abstract The paper is devoted to the generalization of the Vinberg theory of homogeneous convex cones. Such a cone is described as the set of "positive definite matrices" in the Vinberg commutative algebra H-n, of Hermitian T-matrices. These algebras are a generalization of Euclidean Jordan algebras and consist of n x n matrices A = (a(ij)), where a(ij) is an element of R, the entry a(ij) for i < j belongs to some Euclidean vector space (V-ij, g) and a(ij) = a(ij)* = g(a(ij), .) is an element of V-ij* belongs to the dual space V-ij*. The multiplication of T-Hermitian matrices is defined by a system of "isometric" bilinear maps V-ij x V-jk -> V-ij, i < j < k, such that vertical bar a(i)(j) . a(jk)vertical bar, = vertical bar a(ij)vertical bar, . vertical bar a(jk)vertical bar, a(lm) is an element of V-lm. For n = 2, the Hermitian T-algebra H-2 = 9 H-2 (V) is determined by a Euclidean vector space V and is isomorphic to a Euclidean Jordan algebra called the spin factor algebra and the associated homogeneous convex cone is the Lorentz cone of timelike future directed vectors in the Minkowski vector space R-1,R-1 circle plus V. A special Vinberg Hermitian T-algebra is a rank 3 matrix algebra 9 6(V, S) associated to a Clifford Cl(V)-module S together with an "admissible" Euclidean metric g(s). We generalize the construction of rank 2 Vinberg algebras H-2 (V) and special Vinberg algebras H-3 (V, S) to the pseudo-Euclidean case, when V is a pseudo-Euclidean vector space and S = S-0 circle plus S-1 is a Z(2)-graded Clifford Cl(V)-module with an admissible pseudoEuclidean metric. The associated cone V is a homogeneous, but not convex cone in H-m, m = 2, 3. We calculate the characteristic function of Koszul-Vinberg for this cone and write down the associated cubic polynomial. We extend Baez' quantum-mechanical interpretation of the Vinberg cone V-2 subset of H-2(V) to the special rank 3 case. eng
dc.format p. 377-402 eng
dc.language.iso eng eng
dc.publisher SPRINGER BIRKHAUSER eng
dc.relation.ispartof Transformation Groups, volume 26, issue: 2 eng
dc.subject Vinberg algebras eng
dc.subject homogeneous cones eng
dc.subject special geometry eng
dc.subject projective special real manifolds eng
dc.title SPECIAL VINBERG CONES eng
dc.type article eng
dc.identifier.obd 43877982 eng
dc.identifier.wos 000637460500001 eng
dc.identifier.doi 10.1007/s00031-021-09649-w eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://link.springer.com/article/10.1007/s00031-021-09649-w cze
dc.relation.publisherversion https://link.springer.com/article/10.1007/s00031-021-09649-w eng
dc.rights.access Open Access eng
dc.project.ID GA18-00496S/Singulární prostory ze speciální holonomie a foliací eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte