Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Trojovská, Eva cze
dc.contributor.author Kandasamy, Venkatachalam cze
dc.date.accessioned 2025-12-05T10:23:17Z
dc.date.available 2025-12-05T10:23:17Z
dc.date.issued 2021 eng
dc.identifier.issn 2227-7390 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1286
dc.description.abstract Let (F-n)(n >= 0) be the sequence of Fibonacci numbers. The order of appearance of an integer n >= 1 is defined as z(n):=min{k >= 1:n vertical bar Fk}. Let Z' be the set of all limit points of {z(n)/n: n >= 1}. By some theoretical results on the growth of the sequence (z(n)/n) n >= 1, we gain a better understanding of the topological structure of the derived set Z'. For instance, {0,1,32,2}subset of Z' subset of [0,2] and Z' does not have any interior points. A recent result of Trojovska implies the existence of a positive real number t < 2 such that Z' boolean AND (t,2) is the empty set. In this paper, we improve this result by proving that (12/7,2) is the largest subinterval of [0,2] which does not intersect Z'. In addition, we show a connection between the sequence (x(n))(n), for which z(x(n))/x(n) tends to r > 0 (as n -> infinity), and the number of preimages of r under the map m -> z(m)/m. eng
dc.format p. &quot;Article Number:1931&quot; eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Mathematics, volume 9, issue: 16 eng
dc.subject order of appearance eng
dc.subject Fibonacci numbers eng
dc.subject derived set eng
dc.subject greatest prime factor eng
dc.subject natural density eng
dc.title On Some Properties of the Limit Points of (z(n)/n)(n) eng
dc.type article eng
dc.identifier.obd 43877894 eng
dc.identifier.doi 10.3390/math9161931 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2227-7390/9/16/1931 cze
dc.relation.publisherversion https://www.mdpi.com/2227-7390/9/16/1931 eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte