Zobrazit minimální záznam
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Trojovská, Eva |
cze |
| dc.contributor.author |
Kandasamy, Venkatachalam |
cze |
| dc.date.accessioned |
2025-12-05T10:23:17Z |
|
| dc.date.available |
2025-12-05T10:23:17Z |
|
| dc.date.issued |
2021 |
eng |
| dc.identifier.issn |
2227-7390 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1286 |
|
| dc.description.abstract |
Let (F-n)(n >= 0) be the sequence of Fibonacci numbers. The order of appearance of an integer n >= 1 is defined as z(n):=min{k >= 1:n vertical bar Fk}. Let Z' be the set of all limit points of {z(n)/n: n >= 1}. By some theoretical results on the growth of the sequence (z(n)/n) n >= 1, we gain a better understanding of the topological structure of the derived set Z'. For instance, {0,1,32,2}subset of Z' subset of [0,2] and Z' does not have any interior points. A recent result of Trojovska implies the existence of a positive real number t < 2 such that Z' boolean AND (t,2) is the empty set. In this paper, we improve this result by proving that (12/7,2) is the largest subinterval of [0,2] which does not intersect Z'. In addition, we show a connection between the sequence (x(n))(n), for which z(x(n))/x(n) tends to r > 0 (as n -> infinity), and the number of preimages of r under the map m -> z(m)/m. |
eng |
| dc.format |
p. "Article Number:1931" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
MDPI-Molecular diversity preservation international |
eng |
| dc.relation.ispartof |
Mathematics, volume 9, issue: 16 |
eng |
| dc.subject |
order of appearance |
eng |
| dc.subject |
Fibonacci numbers |
eng |
| dc.subject |
derived set |
eng |
| dc.subject |
greatest prime factor |
eng |
| dc.subject |
natural density |
eng |
| dc.title |
On Some Properties of the Limit Points of (z(n)/n)(n) |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43877894 |
eng |
| dc.identifier.doi |
10.3390/math9161931 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.mdpi.com/2227-7390/9/16/1931 |
cze |
| dc.relation.publisherversion |
https://www.mdpi.com/2227-7390/9/16/1931 |
eng |
| dc.rights.access |
Open Access |
eng |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam