Digitální knihovna UHK

Schanuel's Conjecture and the Transcendence of Power Towers

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Trojovská, Eva cze
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T09:58:50Z
dc.date.available 2025-12-05T09:58:50Z
dc.date.issued 2021 eng
dc.identifier.issn 2227-7390 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1247
dc.description.abstract We give three consequences of Schanuel's Conjecture. The first is that P(e)(Q(e)) and P(pi)(Q(pi)) are transcendental, for any non-constant polynomials P(x),Q(x) is an element of Q vertical bar x vertical bar. The second is that pi not equal alpha(beta), for any algebraic numbers alpha and beta. The third is the case of the Gelfond's conjecture (about the transcendence of a finite algebraic power tower) in which all elements are equal. eng
dc.format p. "Article Number: 717" eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Mathematics, volume 9, issue: 7 eng
dc.subject Schanuel's Conjecture eng
dc.subject Gelfond-Schneider Theorem eng
dc.subject Hermite-Lindemann Theorem eng
dc.subject algebraic independence eng
dc.subject transcendence degree eng
dc.subject power tower eng
dc.title Schanuel's Conjecture and the Transcendence of Power Towers eng
dc.type article eng
dc.identifier.obd 43877675 eng
dc.identifier.doi 10.3390/math9070717 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2227-7390/9/7/717 cze
dc.relation.publisherversion https://www.mdpi.com/2227-7390/9/7/717 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet