Zobrazit minimální záznam
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Trojovská, Eva |
cze |
| dc.contributor.author |
Trojovský, Pavel |
cze |
| dc.date.accessioned |
2025-12-05T09:58:50Z |
|
| dc.date.available |
2025-12-05T09:58:50Z |
|
| dc.date.issued |
2021 |
eng |
| dc.identifier.issn |
2227-7390 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1247 |
|
| dc.description.abstract |
We give three consequences of Schanuel's Conjecture. The first is that P(e)(Q(e)) and P(pi)(Q(pi)) are transcendental, for any non-constant polynomials P(x),Q(x) is an element of Q vertical bar x vertical bar. The second is that pi not equal alpha(beta), for any algebraic numbers alpha and beta. The third is the case of the Gelfond's conjecture (about the transcendence of a finite algebraic power tower) in which all elements are equal. |
eng |
| dc.format |
p. "Article Number: 717" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
MDPI-Molecular diversity preservation international |
eng |
| dc.relation.ispartof |
Mathematics, volume 9, issue: 7 |
eng |
| dc.subject |
Schanuel's Conjecture |
eng |
| dc.subject |
Gelfond-Schneider Theorem |
eng |
| dc.subject |
Hermite-Lindemann Theorem |
eng |
| dc.subject |
algebraic independence |
eng |
| dc.subject |
transcendence degree |
eng |
| dc.subject |
power tower |
eng |
| dc.title |
Schanuel's Conjecture and the Transcendence of Power Towers |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43877675 |
eng |
| dc.identifier.doi |
10.3390/math9070717 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.mdpi.com/2227-7390/9/7/717 |
cze |
| dc.relation.publisherversion |
https://www.mdpi.com/2227-7390/9/7/717 |
eng |
| dc.rights.access |
Open Access |
eng |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam