| dc.rights.license | CC BY | eng |
| dc.contributor.author | Trojovská, Eva | cze |
| dc.contributor.author | Trojovský, Pavel | cze |
| dc.date.accessioned | 2025-12-05T09:58:50Z | |
| dc.date.available | 2025-12-05T09:58:50Z | |
| dc.date.issued | 2021 | eng |
| dc.identifier.issn | 2227-7390 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1247 | |
| dc.description.abstract | We give three consequences of Schanuel's Conjecture. The first is that P(e)(Q(e)) and P(pi)(Q(pi)) are transcendental, for any non-constant polynomials P(x),Q(x) is an element of Q vertical bar x vertical bar. The second is that pi not equal alpha(beta), for any algebraic numbers alpha and beta. The third is the case of the Gelfond's conjecture (about the transcendence of a finite algebraic power tower) in which all elements are equal. | eng |
| dc.format | p. "Article Number: 717" | eng |
| dc.language.iso | eng | eng |
| dc.publisher | MDPI-Molecular diversity preservation international | eng |
| dc.relation.ispartof | Mathematics, volume 9, issue: 7 | eng |
| dc.subject | Schanuel's Conjecture | eng |
| dc.subject | Gelfond-Schneider Theorem | eng |
| dc.subject | Hermite-Lindemann Theorem | eng |
| dc.subject | algebraic independence | eng |
| dc.subject | transcendence degree | eng |
| dc.subject | power tower | eng |
| dc.title | Schanuel's Conjecture and the Transcendence of Power Towers | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43877675 | eng |
| dc.identifier.doi | 10.3390/math9070717 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://www.mdpi.com/2227-7390/9/7/717 | cze |
| dc.relation.publisherversion | https://www.mdpi.com/2227-7390/9/7/717 | eng |
| dc.rights.access | Open Access | eng |