Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Coufal, Petr cze
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T09:58:42Z
dc.date.available 2025-12-05T09:58:42Z
dc.date.issued 2021 eng
dc.identifier.issn 2227-7390 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1246
dc.description.abstract For any integer k >= 2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values F-(k-2)(k)=...=F0(k)=0 and F1(k)=1 and such that each term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a number whose decimal expansion is of the form aa horizontal ellipsis a, with a is an element of[1,9]) in the sequence (F(n)((k))F(n)((k+m)))n, for m is an element of[1,9]. This result generalizes a recent work of Bednarik and Trojovska (the case in which (k,m)=(2,1)). Our main tools are the transcendental method (for Diophantine equations) together with the theory of continued fractions (reduction method). eng
dc.format p. "Article Number: 682" eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Mathematics, volume 9, issue: 6 eng
dc.subject k-generalized Fibonacci numbers eng
dc.subject linear forms in logarithms eng
dc.subject reduction method eng
dc.title Repdigits as Product of Terms of k-Bonacci Sequences eng
dc.type article eng
dc.identifier.obd 43877674 eng
dc.identifier.doi 10.3390/math9060682 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2227-7390/9/6/682 cze
dc.relation.publisherversion https://www.mdpi.com/2227-7390/9/6/682 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet