Zobrazit minimální záznam
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Coufal, Petr |
cze |
| dc.contributor.author |
Trojovský, Pavel |
cze |
| dc.date.accessioned |
2025-12-05T09:58:42Z |
|
| dc.date.available |
2025-12-05T09:58:42Z |
|
| dc.date.issued |
2021 |
eng |
| dc.identifier.issn |
2227-7390 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1246 |
|
| dc.description.abstract |
For any integer k >= 2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values F-(k-2)(k)=...=F0(k)=0 and F1(k)=1 and such that each term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a number whose decimal expansion is of the form aa horizontal ellipsis a, with a is an element of[1,9]) in the sequence (F(n)((k))F(n)((k+m)))n, for m is an element of[1,9]. This result generalizes a recent work of Bednarik and Trojovska (the case in which (k,m)=(2,1)). Our main tools are the transcendental method (for Diophantine equations) together with the theory of continued fractions (reduction method). |
eng |
| dc.format |
p. "Article Number: 682" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
MDPI-Molecular diversity preservation international |
eng |
| dc.relation.ispartof |
Mathematics, volume 9, issue: 6 |
eng |
| dc.subject |
k-generalized Fibonacci numbers |
eng |
| dc.subject |
linear forms in logarithms |
eng |
| dc.subject |
reduction method |
eng |
| dc.title |
Repdigits as Product of Terms of k-Bonacci Sequences |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43877674 |
eng |
| dc.identifier.doi |
10.3390/math9060682 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.mdpi.com/2227-7390/9/6/682 |
cze |
| dc.relation.publisherversion |
https://www.mdpi.com/2227-7390/9/6/682 |
eng |
| dc.rights.access |
Open Access |
eng |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam