Digitální knihovna UHK

On Repdigits as Sums of Fibonacci and Tribonacci Numbers

Zobrazit minimální záznam

dc.rights.license CC BY eng
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T09:27:47Z
dc.date.available 2025-12-05T09:27:47Z
dc.date.issued 2020 eng
dc.identifier.issn 2073-8994 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1157
dc.description.abstract In this paper, we use Baker's theory for nonzero linear forms in logarithms of algebraic numbers and a Baker-Davenport reduction procedure to find all repdigits (i.e., numbers with only one distinct digit in its decimal expansion, thus they can be seen as the easiest case of palindromic numbers, which are a "symmetrical" type of numbers) that can be written in the form F-n+T-n, for some n >= 1, where (F-n)(n >= 0) and (T-n)(n >= 0) are the sequences of Fibonacci and Tribonacci numbers, respectively. eng
dc.format p. "Article Number: 1774" eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Symmetry-Basel, volume 12, issue: 11 eng
dc.subject Diophantine equations eng
dc.subject repdigits eng
dc.subject Fibonacci eng
dc.subject Tribonacci eng
dc.subject Baker's theory eng
dc.title On Repdigits as Sums of Fibonacci and Tribonacci Numbers eng
dc.type article eng
dc.identifier.obd 43877106 eng
dc.identifier.doi 10.3390/sym12111774 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2073-8994/12/11/1774 cze
dc.relation.publisherversion https://www.mdpi.com/2073-8994/12/11/1774 eng
dc.rights.access Open Access eng


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Prohledat DSpace


Procházet

Můj účet