Afficher la notice abrégée

dc.rights.license CC BY eng
dc.contributor.author Matoušová, Ivana cze
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T09:26:18Z
dc.date.available 2025-12-05T09:26:18Z
dc.date.issued 2020 eng
dc.identifier.issn 2227-7390 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1147
dc.description.abstract In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov's papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence of Fibonacci p-numbers. In 2013, I. Wloch et al. studied (2,q)-distance Fibonacci numbers F-2(q,n) and found some of their combinatorial properties. In this paper, we state a new coding theory based on the sequence (T-q(n))(n=-infinity)(infinity), which is an extension of Wloch's sequence (F-2(q,n))(n=0)(infinity). eng
dc.format p. "Article Number: 2058" eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Mathematics, volume 8, issue: 11 eng
dc.subject fibonacci numbers eng
dc.subject generalizd fibonacci numbers eng
dc.subject characteristic equation eng
dc.subject coding theory eng
dc.title On Coding by (2,q)-Distance Fibonacci Numbers eng
dc.type article eng
dc.identifier.obd 43877021 eng
dc.identifier.wos 000593345200001 eng
dc.identifier.doi 10.3390/math8112058 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2227-7390/8/11/2058 cze
dc.relation.publisherversion https://www.mdpi.com/2227-7390/8/11/2058 eng
dc.rights.access Open Access eng


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte