Показать сокращенную информацию
| dc.rights.license | CC BY | eng |
| dc.contributor.author | Hubálovský, Štěpán | cze |
| dc.contributor.author | Trojovská, Eva | cze |
| dc.date.accessioned | 2025-12-05T09:22:38Z | |
| dc.date.available | 2025-12-05T09:22:38Z | |
| dc.date.issued | 2020 | eng |
| dc.identifier.issn | 2227-7390 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1121 | |
| dc.description.abstract | Let alpha not equal 1 be a positive real number and let P(x) be a non-constant rational function with algebraic coefficients. In this paper, in particular, we prove that the set of algebraic numbers of the form alpha P(T), with T transcendental, is dense in some open interval of R. | eng |
| dc.format | p. "Article Number: 1687" | eng |
| dc.language.iso | eng | eng |
| dc.publisher | MDPI-Molecular diversity preservation international | eng |
| dc.relation.ispartof | Mathematics, volume 8, issue: 10 | eng |
| dc.subject | Gelfond-Schneider theorem | eng |
| dc.subject | algebraic numbers | eng |
| dc.subject | transcendence | eng |
| dc.subject | Schanuel's conjecture | eng |
| dc.title | Algebraic Numbers of the form alpha(T) with alpha Algebraic and T Transcendental | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43876908 | eng |
| dc.identifier.doi | 10.3390/math8101687 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://www.mdpi.com/2227-7390/8/10/1687 | cze |
| dc.relation.publisherversion | https://www.mdpi.com/2227-7390/8/10/1687 | eng |
| dc.rights.access | Open Access | eng |