Afficher la notice abrégée
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Hubálovský, Štěpán |
cze |
| dc.contributor.author |
Trojovská, Eva |
cze |
| dc.date.accessioned |
2025-12-05T09:22:38Z |
|
| dc.date.available |
2025-12-05T09:22:38Z |
|
| dc.date.issued |
2020 |
eng |
| dc.identifier.issn |
2227-7390 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1121 |
|
| dc.description.abstract |
Let alpha not equal 1 be a positive real number and let P(x) be a non-constant rational function with algebraic coefficients. In this paper, in particular, we prove that the set of algebraic numbers of the form alpha P(T), with T transcendental, is dense in some open interval of R. |
eng |
| dc.format |
p. "Article Number: 1687" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
MDPI-Molecular diversity preservation international |
eng |
| dc.relation.ispartof |
Mathematics, volume 8, issue: 10 |
eng |
| dc.subject |
Gelfond-Schneider theorem |
eng |
| dc.subject |
algebraic numbers |
eng |
| dc.subject |
transcendence |
eng |
| dc.subject |
Schanuel's conjecture |
eng |
| dc.title |
Algebraic Numbers of the form alpha(T) with alpha Algebraic and T Transcendental |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43876908 |
eng |
| dc.identifier.doi |
10.3390/math8101687 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.mdpi.com/2227-7390/8/10/1687 |
cze |
| dc.relation.publisherversion |
https://www.mdpi.com/2227-7390/8/10/1687 |
eng |
| dc.rights.access |
Open Access |
eng |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée