Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Khrabustovskyi, Andrii cze
dc.date.accessioned 2025-12-05T09:15:53Z
dc.date.available 2025-12-05T09:15:53Z
dc.date.issued 2020 eng
dc.identifier.issn 1751-8113 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1074
dc.description.abstract Let Gamma be an arbitrary Z(n)-periodic metric graph, which does not coincide with a line. We consider the Hamiltonian H-epsilon on Gamma with the action -epsilon(-1)d(2)/dx(2) on its edges; here epsilon > 0 is a small parameter. Let m is an element of N. We show that under a proper choice of vertex conditions the spectrum sigma(H-epsilon) of H-epsilon has at least m gaps as e is small enough. We demonstrate that the asymptotic behavior of these gaps and the asymptotic behavior of the botto m of sigma(H-epsilon) as epsilon -> 0 can be completely controlled through a suitable choice of coupling constants standing in those vertex conditions. We also show howto ensure for fixed (small enough) e the precise coincidence of the left endpoints of the first m spectral gaps with predefined numbers. eng
dc.format p. "Article Number: 405202" eng
dc.language.iso eng eng
dc.publisher Institute of physics eng
dc.relation.ispartof Journal of physics A - mathematical and theoretical, volume 53, issue: 40 eng
dc.subject periodic quantum graphs eng
dc.subject spectral gaps eng
dc.subject delta-interactions eng
dc.subject delta '-interactions eng
dc.subject control of spectrum eng
dc.title Periodic quantum graphs with predefined spectral gaps eng
dc.type article eng
dc.identifier.obd 43876698 eng
dc.identifier.wos 000569754600001 eng
dc.identifier.doi 10.1088/1751-8121/aba98b eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://doi.org/10.1088/1751-8121/aba98b cze
dc.source.url https://arxiv.org/abs/2005.11360 cze
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись