Репозиторий Dspace

Complete Asymptotics for Solution of Singularly Perturbed Dynamical Systems with Single Well Potential

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Borisov, Denis cze
dc.contributor.author Sultanov, Oskar A cze
dc.date.accessioned 2025-12-05T09:15:45Z
dc.date.available 2025-12-05T09:15:45Z
dc.date.issued 2020 eng
dc.identifier.issn 2227-7390 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1073
dc.description.abstract We consider a singularly perturbed boundary value problem(-epsilon 2 increment + backward difference V center dot backward difference )u epsilon=0in omega,u epsilon=fon partial differential omega,f is an element of C infinity( partial differential omega).The functionVis supposed to be sufficiently smooth and to have the only minimum in the domain omega. This minimum can degenerate. The potentialVhas no other stationary points in omega and its normal derivative at the boundary is non-zero. Such a problem arises in studying Brownian motion governed by overdamped Langevin dynamics in the presence of a single attracting point. It describes the distribution of the points at the boundary partial differential omega, at which the trajectories of the Brownian particle hit the boundary for the first time. Our main result is a complete asymptotic expansion foru epsilon as epsilon ->+0. This asymptotic is a sum of a termK epsilon psi epsilon and a boundary layer, where psi epsilon is the eigenfunction associated with the lowest eigenvalue of the considered problem andK epsilon is some constant. We provide complete asymptotic expansions for bothK epsilon and psi epsilon; the boundary layer is also an infinite asymptotic series power in epsilon. The error term in the asymptotics foru epsilon is estimated in various norms. eng
dc.format p. "Article Number: 949" eng
dc.language.iso eng eng
dc.publisher MDPI eng
dc.relation.ispartof MATHEMATICS, volume 8, issue: 6 eng
dc.subject exit time problem eng
dc.subject equations with small parameter at higher derivatives eng
dc.subject asymptotics eng
dc.subject overdamped Langevin dynamics eng
dc.title Complete Asymptotics for Solution of Singularly Perturbed Dynamical Systems with Single Well Potential eng
dc.type article eng
dc.identifier.obd 43876664 eng
dc.identifier.wos 000553898800001 eng
dc.identifier.doi 10.3390/math8060949 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2227-7390/8/6/949/pdf cze
dc.relation.publisherversion https://www.mdpi.com/2227-7390/8/6/949/pdf eng
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись