Репозиторий Dspace

On the Characteristic Polynomial of the Generalized k-Distance Tribonacci Sequences

Показать сокращенную информацию

dc.rights.license CC BY eng
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T09:15:19Z
dc.date.available 2025-12-05T09:15:19Z
dc.date.issued 2020 eng
dc.identifier.issn 2227-7390 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1070
dc.description.abstract In 2008, I. Wloch introduced a new generalization of Pell numbers. She used special initial conditions so that this sequence describes the total number of special families of subsets of the set ofnintegers. In this paper, we prove some results about the roots of the characteristic polynomial of this sequence, but we will consider general initial conditions. Since there are currently several types of generalizations of the Pell sequence, it is very difficult for anyone to realize what type of sequence an author really means. Thus, we will call this sequence the generalizedk-distance Tribonacci sequence(T-n((k)))(n >= 0). eng
dc.format p. "Article Number: 1387" eng
dc.language.iso eng eng
dc.publisher MDPI-Molecular diversity preservation international eng
dc.relation.ispartof Mathematics, volume 8, issue: 8 eng
dc.subject Fibonacci numbers eng
dc.subject Tribonacci numbers eng
dc.subject generalized Fibonacci numbers eng
dc.subject characteristic equation eng
dc.subject Descartes' sign rule eng
dc.subject Enestrom-Kakeya. eng
dc.title On the Characteristic Polynomial of the Generalized k-Distance Tribonacci Sequences eng
dc.type article eng
dc.identifier.obd 43876651 eng
dc.identifier.doi 10.3390/math8081387 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://www.mdpi.com/2227-7390/8/8/1387 cze
dc.relation.publisherversion https://www.mdpi.com/2227-7390/8/8/1387 eng
dc.rights.access Open Access eng


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись