Afficher la notice abrégée
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Chaves, Ana Paula |
cze |
| dc.contributor.author |
Trojovský, Pavel |
cze |
| dc.date.accessioned |
2025-12-05T09:05:27Z |
|
| dc.date.available |
2025-12-05T09:05:27Z |
|
| dc.date.issued |
2020 |
eng |
| dc.identifier.issn |
2227-7390 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1030 |
|
| dc.description.abstract |
The sequence of the k-generalized Fibonacci numbers (F-n((k)))(n) is defined by the recurrence F-n((k)) = Sigma(k)(j) = 1 F-n-j((k)) beginning with the k terms 0,..., 0, 1. In this paper, we shall solve the Diophantine equation F-n((k)) = (F-m((l)))(2) + 1, in positive integers m, n, k and l. |
eng |
| dc.format |
p. "Article Number: 1010" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
MDPI-Molecular diversity preservation international |
eng |
| dc.relation.ispartof |
Mathematics, volume 8, issue: 6 |
eng |
| dc.subject |
Fibonacci number |
eng |
| dc.subject |
recurrence sequence |
eng |
| dc.subject |
linear form in logarithms |
eng |
| dc.subject |
reduction method. |
eng |
| dc.title |
A Quadratic Diophantine Equation Involving Generalized Fibonacci Numbers |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43876511 |
eng |
| dc.identifier.doi |
10.3390/math8061010 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://www.mdpi.com/2227-7390/8/6/1010 |
cze |
| dc.relation.publisherversion |
https://www.mdpi.com/2227-7390/8/6/1010 |
eng |
| dc.rights.access |
Open Access |
eng |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée