| dc.rights.license | CC BY | eng |
| dc.contributor.author | Trojovská, Eva | cze |
| dc.date.accessioned | 2025-12-05T09:04:53Z | |
| dc.date.available | 2025-12-05T09:04:53Z | |
| dc.date.issued | 2020 | eng |
| dc.identifier.issn | 2227-7390 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1026 | |
| dc.description.abstract | Let (F-n)(n >= 0) be the Fibonacci sequence. The order of appearance z(n) of an integer n >= 1 is defined by z (n) = min{k >= 1 : n vertical bar F-k}. Marques, and Somer and Krizek proved that all fixed points of the function z (n) have the form n = 5(k) or 12 . 5(k). In this paper, we shall prove that z(n) does not have any k-periodic points, for k >= 2. | eng |
| dc.format | p. "Article Number: 773" | eng |
| dc.language.iso | eng | eng |
| dc.publisher | MDPI-Molecular diversity preservation international | eng |
| dc.relation.ispartof | Mathematics, volume 8, issue: 5 | eng |
| dc.subject | diophantine equation | eng |
| dc.subject | Fibonacci number | eng |
| dc.subject | order of appearance | eng |
| dc.subject | p-adic valuation | eng |
| dc.subject | arithmetic dynamics | eng |
| dc.title | On Periodic Points of the Order of Appearance in the Fibonacci Sequence | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43876491 | eng |
| dc.identifier.doi | 10.3390/math8050773 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://www.mdpi.com/2227-7390/8/5/773 | cze |
| dc.relation.publisherversion | https://www.mdpi.com/2227-7390/8/5/773 | eng |
| dc.rights.access | Open Access | eng |