Показать сокращенную информацию
| dc.rights.license | CC BY | eng |
| dc.contributor.author | Trojovský, Pavel | cze |
| dc.date.accessioned | 2025-12-05T09:04:45Z | |
| dc.date.available | 2025-12-05T09:04:45Z | |
| dc.date.issued | 2020 | eng |
| dc.identifier.issn | 1687-1847 | eng |
| dc.identifier.uri | http://hdl.handle.net/20.500.12603/1025 | |
| dc.description.abstract | Let (Fn)n >= 0 be the Fibonacci sequence. The order of appearance z(n) of a positive integer n is defined as z(n):=min{k >= 1:n divide Fk}. In 2013, Marques proved that lim infn ->infinity z(n)/n=0. Let epsilon be a positive real number. In this paper, in particular, we generalized this Marques' result by proving that almost all positive integers satisfy z(n)/n < epsilon. | eng |
| dc.format | p. "Article Number: 270" | eng |
| dc.language.iso | eng | eng |
| dc.publisher | Springer | eng |
| dc.relation.ispartof | Advances in difference equations, volume 2020, issue: 1 | eng |
| dc.subject | Asymptotic | eng |
| dc.subject | Arithmetic functions | eng |
| dc.subject | Fibonacci sequence | eng |
| dc.subject | Order of appearance | eng |
| dc.subject | Natural density. | eng |
| dc.title | Some problems related to the growth of z(n) | eng |
| dc.type | article | eng |
| dc.identifier.obd | 43876480 | eng |
| dc.identifier.doi | 10.1186/s13662-020-02735-5 | eng |
| dc.publicationstatus | postprint | eng |
| dc.peerreviewed | yes | eng |
| dc.source.url | https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5 | cze |
| dc.relation.publisherversion | https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5 | eng |
| dc.rights.access | Open Access | eng |